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Approximate solutions are presented for the heat conduction equation 
for a semi-infinite rod or half-space with sublimation at its outside 
boundary. The formulas presented are in a form convenient for prac- 
tical computations. 

B e c a u s e  of the  i n t ens ive  d e v e l o p m e n t  of h i g h - t e m p -  
e r a t u r e  r e s e a r c h  much  a t ten t ion  has  r e c e n t l y  been  
given to the  ques t ion  of hea t  t r a n s f e r  a c c o m p a n i e d  by  
phase  t r a n s i t i o n s  on the b o u n d a r y  of a body.  B e c a u s e  

q(:} o 
C,'~,~,, E 

x, 

F ig .  1o Schema t i c  i l l u s t r a t i o n  of 
the p r o b l e m .  

the p r o b l e m  is  a comp lex  one,  so lu t ion  of t h e s e  p r o b -  
l e m s  is often a t t e m p t e d  with the  a id  of e l e c t r o n i c  c o m -  
p u t e r s ,  for  e x a m p l e ,  as  in [1] and a n u m b e r  of o t h e r  
p a p e r s .  However ,  in the m a j o r i t y  of c a s e s  i t  is  usefu l  
to have an a p p r o x i m a t e  so lu t ion  which can d e s c r i b e ,  
however  qua l i t a t i ve ly ,  the phenomenon under  e x a m i n -  
a t ion.  

We a s s u m e  that  a homogeneous  b a r  of m a t e r i a l ,  
sub l iming  f r o m  the so l id  phase  unde r  c e r t a i n  cond i t ions  
without t r a n s i t i o n  th rough  the l iquid p h a s e ,  is  hea ted  
f r o m  one end (Fig~ 1). A f t e r  a c e r t a i n  in i t i a l  i n t e r v a l ,  
a s s o c i a t e d  with the  hea t ing  of the end of the b a r ,  a 
t i m e  c o m e s  when the sub l ima t ion  t e m p e r a t u r e  T s is  
r e a c h e d  on the bounda ry  of the  body.  We sha l l  t ake  
th is  in s t an t  a s  the beg inn ing  of the  p r o c e s s  to be s tud ied .  

Th i s  s c h e m a t i z a t i o n  of the p r o b l e m  of hea t  p r o p a g a -  
t ion is equivalent to an analogous problem for the heat 

conduction equation in the case of a half-space when the 

conditions on the boundary are independent of the loc- 

ation of the point considered. In the first case, on the 
assumption that the lateral surface of the bar is ther- 
mally insulated, and in the second case -- as a result 

of the symmetry of the temperature field resulting 

f r o m  the s y m m e t r y  of the  hea t  f luxes  a t  the  body s u r -  
f ace ,  the p r o b l e m  r e d u c e s  to so lu t ion  of  the  o n e - d i m -  
ens iona l  hea t  conduct ion equat ion 

O~T(x~, t) OT(xl, t) 0 for  ~ ( t ) ~ X l  < oo. (1) 

The b o u n d a r y  condi t ions  a r e  

T (~, t) = T s = const, (2) 

q(t)+~. OT(z't) E7~=O for  x~=~, (3) 
Oxi 

r(xl, t ) ~ T 0 = c o n s t  for  x l ~  oo, (4) 

OT(xl't) - ~ 0  fo r  x , ~  c~. (5) 
Ox~ 

At t i m e  z e r o  t h e r e  is  a c e r t a i n  t e m p e r a t u r e  d i s t r i -  
but ion  and the sub l ima t ion  f ron t  i s  a t  r e s t  

T (x,, 0) = f (x0, (6) 

(0) = ~ (0) = 0 (7) 

In w r i t i n g  Eqs .  (1) - -  (7) the  a s s u m p t i o n  i s  made  
that  the  t h e r m o p h y s i c a l  p r o p e r t i e s  of the  m a t e r i a l  a r e  
cons tan t .  

Th is  p r o b l e m  was e x a m i n e d  in [2 ]  under  condi t ions  
of c o n s t a n c y  of hea t  f lux at  the  body  s u r f a c e .  A t t e m p t s  
have a l so  been  made  to so lve  the above p r o b l e m  with 
v a r i o u s  s i m p l i f y i n g  a s s u m p t i o n s  r e g a r d i n g  the na tu r e  
of the  dependence  of hea t  f lux on t i m e  q = q(t) o r  on the 
r a t e  of p r o p a g a t i o n  ~ = ~(t) of the  s u b l i m a t i o n  f ront .  A 
d e s c r i p t i o n  fol lows of an a p p r o x i m a t e  method  of s o l u -  
t ion of Eq. (1) with bounda ry  and in i t i a l  condi t ions  
(2)- (7) .  

We sha l l  go o v e r  to a new space  c o o r d i n a t e ,  t ak ing  
an o r ig in  co inc iden t  with the moving  sub l ima t ion  f ron t ,  

x = xl - -  ~. (8) 

Then Eqs.  (1):-(3) t ake  the f o r m  

a - -  + ~ ~ (x, t) Or (x, t )  OT__(x, t) = 0 
ax ~ Ox at 

for  O < x < ~ ,  (9) 

, / 

T(o,  t) T ~ ,  (10) 

q ( O +  ~ . ~  v E ~ = o  
Ox 

for  x = 0. (11) 

In p l ace  of  the  condi t ions  at  inf in i ty ,  as  in [2], we sha l  
make  the a s s u m p t i o n  that  the  t e m p e r a t u r e  of the  m a t -  
e r i a l  d i f f e r s  f r o m  i t s  in i t i a l  va lue  only in a l a y e r  of a 
c e r t a i n  t h i c k n e s s  6(t) a d j a c e n t  to the p h a s e  t r a n s i t i o n  
s u r f a c e .  We sha l l  ca l l  i t  the  h e a t - a s s i m i l a t i o n  l a y e r ,  
s i nce  a l l  the hea t  a r r i v i n g  at  the body a c c u m u l a t e s  in 
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this layer .  Then Eqs.  (4) and (5) a re  amended as 
follows: 

T (8, t) = To, (12) 

aT (x, t) = 0 for  x = 5 (t). (13) 
Ox 

We also requ i re  that Eq. (9) be sat isf ied only on the 
ave rage  for  the l aye r  of th ickness  6(t), f o r  which p u r -  
pose we in tegra te  it with r e spec t  to x f r o m  x = 0 to x = 
= 6(t). Using the boundary  conditions (10)-(13),  we 
obtain 

d__ (o -706) -q (O { E--- + T --To L (14) 
dl c y k c  / 

6 

where  8(t) ----~ T(x,  t)dx and c is the specif ic  heat  of 
0 

the mate r ia l .  
Equations (11) and (14) de te rmine  the unknown func-  

t ions ~(t) and 6(t). The dependence of | and T(x, t) 
mus t  be found f r o m  additional cons idera t ions .  We note 
that  Eq. (14) in tegra tes  in the final f o r m ,  

(t)= (-q(t)  dr-- c [ 0 - - 0 0 - - ( 6 ~ 8 o )  To1, (15) 
J /eft /eft 
0 

where  Ieff = E + c(Ts - To) is the so -ca l l ed  effect ive 
enthalpy of the ma te r i a l  and O0, 6 0 a re  the initial va l -  
ues  of the quanti t ies indicated.  

We shall  make the approximat ion that  the t e m p e r -  
a ture  prof i le  T(x, t) in the l a y e r  0 -< x -<- 5(t) is c lose  
to the quadrat ic  f o r m  

d 6 (t) 6alef f 3 q (t). (19) 
dt E 6  7 E 

Solutions of the different ial  equation (19) with the initial 
condition 6(0) =5 0 gives the above-ment ioned second 
integral .  We shall  cons ider  sepa ra te ly  the eases  of 
constant  and var iab le  heat  f lux at the body sur face .  

T h e  c a s e  of c o n s t a n t  hea t  flux, q : const.  The so-  
lution desc r ibed  below di f fers  f r o m  the analogous r e -  
sult of [2] as  r e g a r d s  the method. Use of the moving 
coordina te  (8) al lows us to obtain the solution of the 
p rob l em by a s h o r t e r  method,  while the resu l t  is ex-  
p r e s s e d  in a s imple  f o r m  sui table for  ana lys is  and 
p rac t i ca l  computation.  Moreove r ,  thanks to the solu-  
t ion that  has  been obtained,  it is possible  to cons t ruc t  
an approximate  solution for  the case  q(t) ~ const.  In 
the case  q = const  Eq. (19) is eas i ly  in tegra ted ,  and 
we obtain the following express ion  for  the th ickness  of 
the hea t - a s s imi l a t i on  layer :  

8 (t) = 80 3q t 2;L/eft In [ 1 6/60 - -  1 ] vE (20) 

We shall  now cons ide r  what the quanti ty 50 is. Ac-  
cord ing  to the definition it is the th ickness  of the hea t -  
ass imi la t ion  l aye r  at the t ime when the t empera tu re  at 
the ou te r  boundary  r eaches  the value Ts.  It is easy  to 
see [2] that  up to the s t a r t  of subl imat ion,  the t e m p e r -  
a ture  in the hea t - a s s imi l a t i on  layer ,  when given in the 
f o r m  of a quadrat ic  express ion ,  is de te rmined  a c c o r d -  
ing to the law 

q 6 ( t ) ( l _  x )  2. T (x, t) = T O + - - f f~  --~ 

T (x, t) = A (t) + B (t) x + C (t) x ~. Hence fo r  6 0 a s imple  fo rmula  is obtained, 

By sat is fying the boundary  conditions (10), (12), and 
(13), we obtain the following exp res s ion  for  the depend- 
ence of T(x, t): 

T(x,  t ) = T o + ( T s - - T o ) [ 1 - - x / 6 ( t ) ]  2. (16) 

Substituting (16) into Eq. (11), we have 

q (t) - -  2~ (T s - -  To)/8 (t) = y E ~. (17) 

On the o ther  hand, evaluat ing the quanti ty | taking 
account  of (16), and subst i tut ing the r e su l t  obtained 
into (15), we obtain a second equation to de te rmine  
~(t) and 5(0 ,  

t 

(t) = j" --q (t) dt - -  c---C--- 
Y/eft g/eft 

0 

( T s -  T 0 ) ( 8 -  80). (18) 

Thus,  we have obtained a f i r s t  in tegra l  of the s y s t e m  
of different ial  equations (9), (14). For  a comple te  so -  
lution of this  s y s t e m  we need a second integral .  With 
this objective we el iminate  f r o m  Eqs.  (17) and (18) 
the quantity ~(t), to achieve which we dif ferent ia te  (18) 
with r e spec t  to t and subst i tute  the exp res s ion  obtained 
for  ~ into (17). Af ter  e l emen ta ry  t r a n s f o r m a t i o n s  we 
reduce  the expres s ion  obtained to the following fo rm:  

60 = 2X (Ts - -  To)/q. (21) 

Substituting (21) into (20), and introducing the notation 

k = Ieff/c (T s - -  To) - -  1, (22) 

we reduce  (20) to the following fo rm:  

6(/)-=80 73qtE 2~ Ieff l n c q  [1 6/6~ l k  " (23) 

Thus,  Eqs.  (18) and (23) de te rmine  the magnitude of 
the ent ra ined l a y e r  and the th ickness  of the h e a t - a s -  
s imi la t ion l a y e r  as  a function of t ime.  

Fo r  convenience of theore t i ca l  ana lys is  and p r a c t -  
ical  calculat ion we int roduce the p a r a m e t e r  m as 
follows: 

6 (t) = (1 + kin) 80. (24) 

Substituting (22) and (24) into (23), and c a r r y i n g  out 
s imple  t r a n s f o r m a t i o n s ,  we wri te  the la t te r  in the 
d imens ion less  f o r m  

- - =  r e + I n ( I - - m )  , (25) 
p k + l  k + l  

where  p = 2X7 l~ff/3cq ~ is a quantity having the dimension 
of t ime.  It may  be seen f r o m  expres s ion  (25) that  in = 
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= 0 c o r r e s p o n d s  to t i m e  t = 0, whi le  m ~ 1 c o r r e -  
sponds  to t ~ ~ ,  i . e . ,  the  r a n g e  of v a r i a t i o n  of the  p a -  
r a m e t e r  m: 0 --< m < 1 c o r r e s p o n d s  to the inf ini te  t i m e  
i n t e r v a l  0 <-- t < ~ .  It is  s een  i m m e d i a t e l y  that  when 
the p a r a m e t e r  m i s  v a r i e d  in the  above  r a n g e ,  the  
r igh t  s ide  of (25) i n c r e a s e s  mono ton ica l l y ,  s t a r t i n g  at  
z e r o .  T h e r e f o r e ,  r e l a t i o n  (25) e s t a b l i s h e s  a s i n g l e -  
va lued  c o r r e s p o n d e n c e  be tween  the t r u e  t i m e  t and the 
a r t i f i c i a l  p a r a m e t e r  m. 

Subst i tu t ing  (22) and (24) into Eq. (18), we e x p r e s s  
the sub l iming  l a y e r  of m a t e r i a l  in the fol lowing fo rm:  

t 

~(t)-~ ~ q dt 1 k 8ore. (26) 
/eft 3 k + 1 

0 

F o r m u l a  (26) is  a s e m i p a r a m e t r i c  e x p r e s s i o n  fo r  the 
dependence  rl=~ (t), w h e r e  the p a r a m e t e r  i s  the  quan-  
t i ty  m ,  connected  with the t i m e  t by  r e l a t i o n  (25). Using  
the above  r e l a t i o n ,  i t  is  e a s y  to e s t a b l i s h  the d e g r e e  of 
a p p r o x i m a t i o n  of the va lues  of  the  quant i ty  ~ (t) to the 
a s y m p t o t i c  r e l a t i o n  given by the e x p r e s s i o n  

t 

S qdt 1 le 80. (27) 
(t) -= ~ 1~ff 3 ~ + 1 

0 

It  is  s een  f r o m  (25) tha t  a s  t i n c r e a s e s  the  p a r a -  
m e t e r  m tends  v e r y  quickly  to uni ty.  In c a s e s  of p r a c -  
t i ca l  i m p o r t a n c e  the quant i ty  m is  c l o s e  to uni ty ,  
a p a r t  f r o m  a s h o r t  i n i t i a l  t ime  i n t e r v a l ,  in which f o r -  
mula  (27) m a y  be  used .  This  no tewor thy  f e a t u r e  is  a 
consequence  of the  fac t  tha t  in the chosen  moving c o -  
o rd ina t e  s y s t e m  the t h i ckness  of the h e a t - a s s i m i l a t i o n  
l a y e r  5(t) t ends  to  a cons tan t  va lue  6ma  x as  t ~ ~o. I t  
fo l lows f r o m  (24) that  

8max = (1 + k) 80. (28) 

It i s  of i n t e r e s t  to eva lua te  the  sub l ima t ion  r a t e  ~ (t). 
Taking  the d e r i v a t i v e  of (26) and us ing  (25), we find 

~(t)- q 1 80 k + l  (l--m). (29) 
/eft 3 p I + km 

Hence i t  is  c l e a r  tha t  dur ing  the a b o v e - m e n t i o n e d  t ime  
i n t e r v a l ,  the r a t e  of sub l ima t ion  i s  c l o s e  to the  c o n s t -  
ant  va lue  q/~lIef f . By r e p l a c i n g  the quan t i t i e s  6o, k,  
p in (29) b y  the o r i g i n a l  t h e r m o p h y s i e a l  p r o p e r t i e s ,  i t  
i s  not  d i f f icu l t  to e s t a b l i s h  tha t  ~(0) =0  (and then m =0) .  
This  c o r r e s p o n d s  to the  in i t i a l  condi t ions  of the  p r o b -  
l em.  

Thus ,  b y  us ing  f o r m u l a s  (26) and (29), and c a l c u l a t -  
ing the p a r a m e t e r  m f r o m  r e l a t i o n s  (25), we m a y  d e t -  
e r m i n e  the va lue  of the  l a y e r  tha t  has  been  r e m o v e d  
and the  r a t e  of sub l ima t ion  of the  m a t e r i a l  of a s e m i -  
infinite b a r  of a h a l f - s p a c e  a t  any ins tan t  t i m e .  Ca l cu -  
la t ion  of the  quant i ty  ~ (t) m a y  be  s i m p l i f i e d  by  a p p r o x -  
ima t ing  to the dependence  5(t) by  the exponent ia l  func-  
t ion 

8(0 =8o[1 + k ( 1  - -  e:~p ( - -  a 1))]. (30) 

It i s  c l e a r  that  the bounda ry  condi t ions  5(0) = 0 and 
6( ~o ) = 6max a r e  s a t i s f i ed .  The  exponent  ce m u s t  be  

chosen so that  the r e s u l t s  Of ca lcu la t ions  accord ing  to 
(30) be s t  co inc ide  with the c o r r e s p o n d i n g  va lues  ob-  
ta ined  with the  aid of (24) in the in i t i a l  sec t ion,  where  
the quant i ty  m d i f f e r s  no t i ceab ly  f rom unity.  As ca l -  
cula t ion has  shown, s a t i s f a c t o r y  a g r e e m e n t  i s  ob ta ined  
if ~ i s  d e t e r m i n e d  f r o m  the condi t ion that  the two e x -  
p r e s s i o n s  fo r  5(t) co inc ide  at the t i m e  when the d i f f e r -  
ence 5 - 5  o a t t a ins  3 /4  of i t s  m a x i m u m  value .  Then we 
obtain the fol lowing r e l a t i o n  force: 

a=2.77 / p  ~--~(1 .85k - - k + k l ) "  (31) 

F o r  convenience  of ca lcu la t ion  we w r i t e  (26) in the 
d i m e n s i o n l e s s  f o r m  

(t) (k + 1)~:F 1 k - -  m, (32) 
3 3 k + l  

w h e r e  -~ (t) = ~ (0/60; Y~ t/ima• �9 = t~x/p; and tma  x i s  
the  to ta l  t i m e  of the sub l ima t ion  p r o c e s s .  

The ana logous  e x p r e s s i o n  when the a pp rox ima t ion  
(30) i s  used  t a k e s  the  f o r m  

~( t )  = k +_....~1 xt- 1 /e [i - - e x p  (-apx'D]. (33) 
3 3 k + l  

F i g u r e  2 shows the r e s u l t s  of ca l cu l a t i on  of the quant i ty  
~(t) a c c o r d i n g  to f o r m u l a s  (25) and (32), c o m p a r e d  
with the r e s u l t s  of so lv ing  the o r i g i n a l  s y s t e m  (1)--(7) 
by  a n u m e r i c a l  method on a c o m p u t e r .  F o r  e o m p a r -  
i son  the s a m e  fi__gure g ives  the r e s u l t s  of ca lcu la t ion  
of the quant i ty  ~ (t) with the  a id  of a s imp l i f i ed  f o r m u -  
la  obta ined  f r o m  (32) o r  (26) by  dropping  the second  
t e r m  on the r i gh t  s ide .  In p r a c t i c e ,  ca lcu la t ion  of the 
quant i ty  ~ (t) [ r o m  the a p p r o x i m a t e  r e l a t i o n  (33) g ives  
the s a m e  r e s u l t s  a s  ca l cu l a t i on  f r o m  (32). On the 
g r a p h  the c u r v e s  c o r r e s p o n d i n g  to the above r e l a t i o n s  
run  t oge the r .  C o m p a r i s o n  of the c u r v e s  shows good 
a g r e e m e n t  wi th  the  r e s u l t s  of ca l cu la t ions  obta ined by  
o t h e r  me thods .  

T h e  c a s e  o f  v a r i a b l e  hea t  f lux q =- q(t). We sha l l  r e p -  
r e s e n t  the  hea t  f lux in the f o r m  of a sum 

q (t) = qo 4- ql (t), (34) 

whe re  q0 = cons t  is  the  hea t  f lux at  the  in i t i a l  t i m e  t = 0 
when the sub l ima t ion  t e m p e r a t u r e  is  f i r s t  obta ined on 
the ou t s ide  s u r f a c e ;  ql(t) is  the quant i ty  d e t e r m i n e d  b y  
a s s i g n i n g  the  dependence  q(t);  ev iden t ly  ql(0) = 0. 

Re tu rn ing  to the  so lu t ion  of Eqs .  (18) and (19), we 
note that  the  i n t e g r a l  (18) r e m a i n s  unchanged.  Thus ,  
the  m a t t e r  r e d u c e s  to so lu t ion  of Eq. (19) with a f r ee  
t e r m  depending  on t i m e .  I t  is  not p o s s i b l e  to i n t e g r a t e  
th is  equat ion in exac t  f o r m ,  and we t h e r e f o r e  app ly  the 
fol lowing a p p r o x i m a t e  method.  We w r i t e  Eq. (19), t a k -  
ing account  of (34), as  

d~Sdt 6aleffE8 ~/E3 q0 - -  ~ q~ (0. (35) 

We seek  a so lu t ion  of Eq. (35) in the f o r m  of a s u m  

8 (0 = 8i (0 + f (0, (36) 
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Fig. 2. Dependence of the sublimation of 
the material~ on the conditions at the 
body surface and on the time t: 1) for 
k = l . 5 ,  T = 1 . 2 5 6 ; 2 )  k = 0 . 3 3 ,  T = 2 . 3 2 ;  
a )  accord ing  to the equation ~ (t) = (k + 
+ 1)Tt /3) ;  b) numer i ca l  solution on a 

compute r ;  c) ca lcula t ion accord ing  to 
fo rmulas  (25) and (32). 
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Fig.  3. S u b l i m a t i o n ~  of the m a t e r i a l  as a 
funct ion of t ime  for a va r i ab le  heat  flux 
a t  the boundary  k = 1. 756, ~- = 0. 224 (1) and 

0. 113 (2): a) f rom the equat ion b) n u m e r -  
ica l  solut ion on a compute r ;  e) ca lcu la t ion  

f rom fo rmulas  (45), (46), 
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where  51(t ) is a solution of the equation 

d 5 6alef f 3 qo; (37) dt E5 yE 

and f ( t )  is the deviation of 5(t) f r o m  the "s ta t ionary"  
(with q = q0 = const) solution 5 = 6t(t). As r e ga rds  f ( t ) ,  
we assume that  it is smal l  in compar i son  with ~(t) ,  
i . e . ,  

If (t)[ << 61 (t). (38) 

Substituting (36) into (35) we obtain 

d ~l ~ df 6aleff 3 3 
at at E (51+/) V E qo -- -~ ql (t). (39) 

Using the inequality (38), we wri te  the f i r s t  t e r m  on 
the r ight  side of (39) in the f o r m  of a geomet r i ca l  p r o -  
g re s s ion  with common ra t io  f /6  i. Consider ing  the r a -  
tio f/51 to be smal l  enough, we leave only those t e r m s  
of the se r i e s  which contain f/61 to a power not ex-  
ceeding the f i rs t .  Then Eq. (39) t r a n s f o r m s  to the ap-  
proximate  f o r m  

d 61 6alef f + 3 df 6aleff 3 
dt E6t - ~  qo + dt = - -  e 5~ f (t) -- - ~  ql (t) 

or ,  because  of (37), 

df 6aleff 3 ql (t). (40) 
a-Z- + ~ t (t) = - - ~  

Thus,  to de te rmine  the function f( t ) ,  we have obtained 
a l inear  different ial  equation of f i r s t  o rde r .  Here  we 
r ega rd  61(t ) to be a known function of t ime ,  s ince the 
solution of Eq. (37) with q = q0 = const  has been obtained 
above, 

According to the definition (36), we have the follow- 

ing initial condition for f(t): f(0) = 0. The solution of 
(40) with the given initial condition is the function 

t 

0 

t t 

X ~ ql (t)exp (6a k + l 
0 0 

(41) 

Substituting (41) into (36), we obtain an express ion  fo r  
the dependence 5(t)~ Now the following re la t ion  is ob-  
tained for  the th ickness  of the subl iming layer ,  f rom 
(18), (22) and the express ion  obtained o r  5(t): 

t 

~ q(t) d t -  
0 

3 k + l  k 

t t t 

•  dt ) S k + !  f ] 
~ k ~ ' 
0 0 0 

where ,  as be fore ,  the p a r a m e t e r  m is re la ted  with the 
t ime t through (25) when q --q0. 

Thus,  the approximate  solution of the p rob lem with 
var iab le  heat  flux q =q(t) has been obtained in quadra -  
tu res  (42). The t empera tu re  profi le  is then de te rmined  
by Eqs. (16), (36), and (41). 

In cases when the function f(t) is not small in com- 
parison with 61(t), the solution obtained, generally 
speaking, will not be valid~ Nevertheless, it may be 
applied even in these cases with specific limitations. 

Let us examine such a case. It is clear from express- 
ions (36) and (41) thatf(t) should not exceed 6l(t ) in 
absolute magnitude for the same values of the argu- 
ments, since negative thicknesses of the heat-assimi- 

lation layer on 5(t) cannot exist physically. Therefore, 
we make the approximation f(t) =--51(t ) incases when 
the left side of (41) becomes less than --61(t ). This will 
correspond to the regime of zero thickness of the heat- 
assimilation layer, 5(t) = 0. Setting 6(t) = 0 in Eq. (18) 
and taking account of (22), we may then write the for- 
mula for ~ (t) in the following form: 

t 

( t ) = ~  q(t) dr+ 1 1 5o, (43) 
u 3 k q- 1 

0 

where  6 0 is evaluated as  before  f r o m  (21) with q =q0. 
As is seen f r o m  (43), ca lcula t ion of the th ickness  of 
the subl iming l aye r  is s implif ied in this case .  The 
phys ica l  meaning of  (43) is that  fo r  specif ic  conditions 
a heat  t r a n s f e r  r eg ime  may  be attained such that all 
the heat  a r r i v i n g  is expended in subl iming the mate r ia l .  
This ,  however ,  co r r e sponds  to a s tepwise f o r m  of 
t e m p e r a t u r e  var ia t ion:  T(0, t) = Ts  and T(Ax, t) = T0, 
where  As is a posi t ive value which may be as smal l  as  
we please .  It is unders tood that  this kind of explanation 
of  the p r o c e s s  of subl imat ion and heating of the ba r  is 
an approximat ion.  The co r respond ing  e r r o r  ma y  be 
evaluated by taking account  of the main t e r m s  re la t ive  
to the quanti ty f/61 in solving Eq. (39). 

It may  be seen d i rec t ly  f r o m  fo rmula  (18) that in 
the initial per iod of subl imat ion it is possible  to make 
the approximat ion  that  

t 

(t) = ~ q(t) dt. (44) 
/eft 

0 

The value of the above initial per iod is de te rmined  
by the intensi ty  of the heat  flux at the boundary  and by 
the t he rmophys i ca l  p rope r t i e s  of the mate r i a l .  As 
t ime i n c r e a s e s ,  it is n e c e s s a r y  to use re la t ion  (42). 
For specific conditions the magnitude of the subliming 

layer is determined approximately by (43). The pres- 
ence of a second term on the right of (43) is due to the 

fact that in the initial period a certain amount of heat 
accumulates in the heat-assimilation layer, and then-- 
for a large enough rate of propagation of the sublima- 

tion front--this heat goes over "returns" as it were, to 

the subl iming l aye r s .  
As in the p reced ing  case ,  we wri te  re la t ions  (42) 

and (43) in d imens ion les s  fo rm,  

7 
~(t) k + l ~  1 k [ 

= x q (t) d t  m --- 
3 3 k + I  

o 
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- -Texp ( (k + 1)3 d i  k "~ ~ ~ ql(t) ( l ~m)~ ) • 
o 0 

• exp ((k + 1)a 
k " ~  

0 

~(t5 =k+l  "~ q (t) dt-} 1 1 
3 3 k + l '  

0 

(45) 

(46) 

where  q (t) = q (t)/qo; ql (t) = ql (t)/qo. 
The re su l t s  of calculat ions  of the quantity ~([) f r o m  

fo rmulas  (45) and (46) a re  given in Fig.  3 and compared  
with the resu l t s  of a solution of the or iginal  equation by 
a numer ica l  method on a computer .  

Fo r  convenience of examinat ion,  the heat  f luxes have 
been r e f e r r e d  to the m a x i m um  heat  fluxes in each case ,  
i .e . ,  5(t) = 0. Here the calculat ion in case  i was c a r -  
r ied  out comple te ly  accord ing  to fo rmula  (45). In case  
2 calculat ion of the quantity q = q/qmax, in conformi ty  with 
the above-ment ioned condition 5(t) = 0, was c a r r i ed  out 
accord ing  to fo rmula  (46), s t a r t ing  f r o m  the t ime t = 
= 0.545, when the above equality is sat isf ied.  In addi-  
tion, Fig .  3 also gives r e su l t s  of calculat ion of the 
th ickness  of the subl iming layer  accord ing  to the ap-  
p rox imate  re la t ion  (44). F r o m  the data p resen ted  it is 
c lear  that  the approximate  solutions obtained for  the 
heat  conduction equation desc r ibe ,  with an accu racy  

sufficient for practical applications, the process of 
heating and sublimation of a semi-infinite bar or a 
half-space, with heat flux at the body boundary given 

as an arbitrary function of time. For a course esti- 
mate of the thickness of the subliming layer we may 
use formula (44), which is in the nature of a fir st approx- 
imation in calculations of sublimation of materials sub- 
ject to intensive heating. 

NOTATION 

x I is the coordinate measured along the length from 

the end of the bar; t is the time; T(x I, t) is the current 
temperature at section xl; a is the thermal diffusivity 

of material; ~(t) is the coordinate of sublimation front; 
q(t) is the heat flux to external body surface; k is the 

thermal conductivity of material. E is the latent heat 

of sublimation (vaporization) of material; y is the den- 

sity of material; ~ -- d~/dt is the rate of propagation 
of sublimation front. 
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