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Approximate solutions are presented for the heat conduction equation
for a semi-infinite rod or half-space with sublimation at its outside
boundary. The formulas presented are in a form convenient for prac-
tical computations,

Because of the intensive development of high-temp-
erature research much attention has recently been
given to the question of heat transfer accompanied by
phase transitions on the boundary of a body. Because
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Fig. 1. Schematic illustration of
the problem,

the problem is a complex one, solution of these prob-
lems is often attempted with the aid of electronic com-
puters, for example, as in [1] and a number of other
papers. However, in the majority of cases it is useful
to have an approximate solution which can describe,
however qualitatively. the phenomenon under examin-
ation,

We assume that a homogeneous bar of material,
subliming from the solid phase under certain conditions
without transition through the liquid phase, is heated
from one end (Fig. 1). After a certain initial interval,
associated with the heating of the end of the bar, a
time comes when the sublimation temperature Tg is
reached on the boundary of the body, We shall take

this instant as the beginning of the process to be studied.

This schematization of the problem of heat propaga-
tion is equivalent to an analogous problem for the heat
conduction equation in the case of a half-space when the
conditions on the boundary are independent of the loc-
ation of the point considered. In the first case, on the
assumption that the lateral surface of the bar is ther-
mally insulated, and in the second case — as a result
of the symmetry of the temperature field resulting
from the symmetry of the heat fluxes at the body sur-
face, the problem reduces to solution of the one-dim-
ensional heat conduction equation

OT (xy, 1) 0T (xy, )
0x? ot

=0for t()<n <. (1)

The boundary conditions are

T (€, ty =T, = const, : (2)
q(t)+xa_T_g‘—l’ﬁ—Eyg=o for x, =% (3)
T(x,, t)~> Ty =const for x;, » =, 4)

OT (xy, £)

-0 for xl¥> oo. (5)
dx;

At time zero there is a certain temperature distri-
bution and the sublimation front is at rest

T (x, 0) =[x, (6)

£(0) =£(0) = 0. )

In writing Egs. (1) — (7) the assumption is made
that the thermophysical properties of the material are
constant,

This problem was examined in-[2] under conditions
of constancy of heat flux at the body surface, Attempts
have also been made to solve the above problem with
various simplifying assumptions regarding the nature
of the dependence of heat flux on time q =q(t) or on the
rate of propagation g = g(t ) of the sublimation front. A
description follows of an approximate method of solu-
tion of Eq. (1) with boundary and initial conditions
(2)—(7).

We shall go over to a new space coordinate, taking
an origin coincident with the moving sublimation front,

x=x—E (8)
Then Egs. (1)—(3) take the form

LT 0) L T (x,t) T (x, 1) —
ox*? x ot
for 0 < x << ce, (9)
T, t)=T,, (10)
a()+ 2 aT(x D _ygi—o
for x =0. (11)

In place of the conditions at infinity, as in [2], we shal
make the assumption that the temperature of the mat-
erial differs from its initial value only in a layer of a
certain thickness §(t) adjacent to the phase transition
surface. We shall call it the heat-assimilation layer.
since all the heat arriving at the body accumulates in
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this layer. Then Egs, (4) and (5) are amended as
follows:

T, n=T, 12)
TED o for x =50 13)
ox

We also require that Eq. (9) be satisfied only on the
average for the layer of thickness §(t), for which pur-
pose we integrate it with respect to x from x = 0 to x =
= 6(t). Using the boundary conditions (10)—(13), we
obtain

[
where 6 (¢) =§ T (x, )dx and c is the specific heat of
0

the material.

Equations (11) and (14) determine the unknown func-
tions £(t) and 6(t). The dependence of ©(t) and T(x, t)
must be found from additional considerations. We note
that Eq. (14) integrates in the final form,

)4
E(t) = g 99 g 9@, —(—8)Ts (15)
) Viest Teg

where leff = E + ¢(Ts ~ Ty) is the so-called effective
enthalpy of the material and @y, 6, are the initial val-
ues of the quantities indicated.

We shall make the approximation that the temper-
ature profile T(x, t) in the layer 0 = x = 6(t) is close
to the quadratic form ’

T(x, ) = AD) + BB x+CH) 2.

By satisfying the boundary conditions (10), (12), and
(13), we obtain the following expression for the depend-
ence of T(x, t):

T, ) =Ty+Ts—T) [l —x8HE.  (16)
Substituting (16) into Eq. (11), we have
q()— 20 (T, — T8 () =Y EE. an

On the other hand, evaluating the quantity ®(t), taking
account of (16), and substituting the result obtained
into (15), we obtain a second equation to determine
£(ty and 6(t),

f
_ (49 5 ¢ o _Ty6—b) (18
£ () jweff‘” G 6 —ToE—8). 9)

Thus, we have obtained a first integral of the system
of differential equations (9), (14). For a complete so-
lution of this system we need a second integral. With
this objective we eliminate from Eqs. (17) and (18)

the quantity £(t), to achieve which we differentiate (18)
with respect to t and substitute the expression obtained
for £ into (17). After elementary transformations we
reduce the expression obtained to the following form:
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dé() balegs 3
dt ES§ YE

q (). (19)

Solutions of the differential equation (19) with the initial
condition 6(0) =0y gives the above-mentioned second
integral. We shall consider separately the cases of
constant and variable heat flux at the body surface.

The case of constant heat flux, q = const, The so-
lution described below differs from the analogous re-
sult of [2] as regards the method, Use of the moving
coordinate (8) allows us to obtain the solution of the
problem by a shorter method, while the result is ex-
pressed in a simple form suitable for analysis and
practical computation, Moreover, thanks to the solu-
tion that has been obtained, it is possible to construct
an approximate solution for the case q(t) # const, In
the case g = const Eq. (19) is easily integrated, and
we obtain the following expression for the thickness of
the heat-assimilation layer:

8() =8, ——L W__Weffm{l__ﬁ@_o.—_l._ )
tOvE & 2\ Lgs/cq 8o—1 |

We shall now consider what the quantity 6y is. Ac-
cording to the definition it is the thickness of the heat-
assimilation layer at the time when the temperature at
the outer boundary reaches the value Tq. It is easy to
see [2] that up to the start of sublimation, the temper-
ature in the heat-assimilation layer, when given in the
form of a quadratic expression, is determined accord-
ing to the law

7 980 x¥
T, ) =T+ 12 (1 a)'

Hence for §, a simple formula is obtained,
8 = 20 (Ts — T,)/g. (21)
Substituting (21) into (20), and introducing the notation
k= Legfe(Ty — Ty — 1, (22)
we reduce (20) to the following form:
8 () =60—~3%~3%e—ff1n [1 —fi‘%—kf—l] . @23)

Thus, Egs. (18) and (23) determine the magnitude of
the entrained layer and the thickness of the heat-as-
similation layer as a function of time,

For convenience of theoretical analysis and pract-
ical calculation we introduce the parameter m as
follows:

8(1) = (1 + km) 8. (24)

Substituting (22) and (24) into (23), and carrying out
simple transformations, we write the latter in the
dimensionless form

k

.I_t;_:__m[m m—]—ln(l——m)], (25)

where p = 2iy [2/3cq® is a quantity having the dimension
of time. It may be seen from expression (25) that m =
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= 0 corresponds to time t = 0, while m — 1 corre-
sponds to t — <, i,e., the range of variation of the pa-
rameter m: 0 = m < 1 corresponds to the infinite time
interval 0 = t < =, It is seen immediately that when
the parameter m is varied in the above range, the
right side of (25) increases monotonically, starting at
zero, Therefore, relation (25) establishes a single-
valued correspondence between the true time t and the
artificial parameter m.

Substituting (22) and (24) into Eq. (18), we express
the subliming layer of material in the following form:

¢

q 1 k
a(t)=§ dt— L
y v letf 3 k+1

Gp 1. (26)

Formula (26) is a semiparametric expression for the
dependence n=£(t), where the parameter is the quan-
tity m, connected with the time t by relation (25). Using
the above relation, it is easy to establish the degree of
approximation of the values of the quantity £(t) to the
asymptotic relation given by the expression

k
E+1

t
" qdt 1
B0 = | Lo —
5 Y Logt 3

8- @)

It is seen from (25) that as t increases the para-
meter m tends very quickly to unity. In cases of prac-
tical importance the quantity m is close to unity,
apart from a short initial time interval, in which for-
mula (27) may be used, This noteworthy feature is a
consequence of the fact that in the chosen moving co-
ordinate system the thickness of the heat-assimilation
layer 6(t) tends to a constant value Sy ast — =, It
follows from (24) that

Omax == (1 -+ k) Go. (28)

It is of interest to evaluate the sublimation rate §°(t).

Taking the derivative of (26) and using (25), we find

. q 1 8 k+1 S

£@ = —— (1—m). (29)
Yigr 3 p 1+4km

Hence it is clear that during the above-mentioned time
interval, the rate of sublimation is close to the congt-
ant value g¢/yl . . By replacing the quantities &, k,

p in (29) by the original thermophysical properties, it
is not difficult to establish that £(0) =0 (and then m =0),
This corresponds to the initial conditions of the prob-
lem.

Thus, by using formulas (26) and (29), and calculat-
ing the parameter m from relations (25), we may det-
ermine the value of the layer that has been removed
and the rate of sublimation of the material of a semi-
infinite bar of a half-space at any instant time, Calcu-
lation of the quantity £(t) may be simplified by approx-
imating to the dependence 6(t) by the exponential func-
tion

8(t) =81 + k(1 —exp(—ad)l (30)

It is clear that the boundary conditions 6(0) = 0 and
8{=) = dmax are satisfied. The exponent o must be
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chosen so that the results of calculations according to
(30) best coincide with the corresponding values ob-
tained with the aid of (24) in the initial section, where
the quantity m differs noticeably from unity. As cal-
culation has shown, satisfactory agreement is obtained
if « is determined from the condition that the two ex-
pressions for 6(t) coincide at the time when the differ-
ence 8—3&; attains 3/4 of its maximum value. Then we
obtain the following relation fora:

k k
=2.77 — 1.86 ——— . 31
" /p k+1( k+1) G0

For convenience of calculation we write (26) in the
dimensionless form

sn_ (E4+DF 1 _k
=Ty

, (32)
where E() =E1)/0y; = t/lmx; T=tmax/p; and . is
the total time of the sublimation process.

The analogous expression when the approximation
(30) is used takes the form
1 k =

3 T‘t——' —3— ];:_] [1 — €Xp ("“U.th)]. (33)

E(z-)zk—l—l

Figure 2 shows the results of calculation of the quantity
E(t-) according to formulas (25) and (32), compared
with the results of solving the original system (1)—(7)
by a numerical method on a computer, For compar-
ison the same figure gives the results of calculation
of the quantity Z(t) with the aid of a simplified formu-
la obtained from (32) or (26) by dropping the second
term on the right side. In practice, calculation of the
quantity £(t) from the approximate relation (33) gives
the same results as calculation from (32). On the
graph the curves corresponding to the above relations
run together, Comparison of the curves shows good
agreement with the results of calculations obtained by
other methods,

The case of variable heat flux g =q(t), We shall rep-
resent the heat flux in the form of a sum

q{) =g+ q. (@), (34)

where gy = const is the heat flux at the initial time t = 0
when the sublimation temperature is first obtained on .
the outside surface; q;(t) is the guantity determined by
assigning the dependence q(t); evidently q;(0) =0,

Returning to the solution of Egs, (18) and (19), we
note that the integral (18) remains unchanged. Thus,
the matter reduces to solution of Eq. (19) with a free
term depending on time, It is not possible to integrate
this equation in exact form, and we therefore apply the
following approximate method, We write Eq, (19), tak-
ing account of (34), as

ds  6al 3 3
20 _Doeff O qe——— G, {1).

(35)
dit ES vE vE

We seek a solution of Eq. (35) in the form of a sum

8() =8 -+70), (36)
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Fig. 2. Dependence of the sublimation of
the material £ on the conditions at the
body surface and on the time t: 1) for
k=1.5,7=1.256;2) k=0.33, 7=2.32;
a) according to the equation E(t) =k +
+1)7t /3); b) numerical solution on a
computer; c¢) calculation according to
formulas (25) and (32),
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Fig. 3. Sublimationg of the material as a

function of time for a variable heat flux

at the boundary k =1.756,7 =0.224 (1) and

0.113 (2): a) from the equation b) numer-

ical solution on a computer; ¢) calculation
from formulas (45), (46).
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where §(t) is a solution of the equation

48 _6alegr 3

; 37
4t~ Eo yE @7)

and f (t) is the deviation of 6(t) from the "stationary"
(with g =y = const) solution 6 =84(t). As regards f(t),
we assume that it is small in comparison with §(t),
i.e,,

17 ()] <8.(). (38)
Substituting (36) into (35) we obtain

48, , df _ 6alegg 5

dt dt

o (). (39)

E@®+f) vE vE
Using the inequality (38), we write the first term on
the right side of (39) in the form of a geometrical pro-
gression with common ratio f/6;. Considering the ra-
tio f/8, to be small enough, we leave only those terms
of the series which contain f/6, to a power not ex-
ceeding the first, Then Eq. (39) transforms to the ap-
proximate form

dé8, 6alys 3 df 6al.g 3
et Z g = — ) o — —— ¢
dt  E§, yE% dt E8 re yqu()
or, because of (37),
df . 6al.g 3
- = — f).

Thus, to determine the function f(t), we have obtained
a linear differential equation of first order. Here we
regard 6,(t) to be a known function of time, since the
solution of Eq. (37) with g =qy=const has been obtained
above,

According to the definition (36), we have the follow-
ing initial condition for f{t): f(0) = 0. The solution of
(40) with the given initial condition is the function

1

3 (g L (4t
f(@) = YEexp( 6a P fé%(l‘))x

[

t ¢
E+1 di
xj‘ q, () exp <6a . 5‘ 6?(0). (41)
b

0

Substituting (41) into (36), we obtain an expression for
the dependence &(t). Now the following relation is ob~-
tained for the thickness of the subliming layer, from
(18), (22) and the expression obtained or 6(t):

t

§m=§iQM~
; ¥ lest

1 3
[km 60 —ﬁ' exp (—Ga

R
3 k41

¢ ¢ 4
odf R+ 1 dt
xgawﬂg%map@ak Jgﬁﬂw}4@>

where, as before, the parameter m is related with the
time t through (25) when ¢ =qq.

41
X
k
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Thus, the approximate solution of the problem with
variable heat flux q =q(t) has been obtained in quadra-
tures (42). The temperature profile is then determined
by Egs. (16), (36), and (41),

In cases when the function f(t) is not small in com-
parison with 6;(t), the solution obtained, generally
speaking, will not be valid. Nevertheless, it may be
applied even in these cases with specific limitations.
Let us examine such a case. If is clear from express-
ions (36) and (41) that f(t) should not exceed 0(t) in
absolute magnitude for the same values of the argu-
ments, since negative thicknesses of the heat-assimi-
lation layer on 6(t) cannot exist physically. Therefore,
we make the approximation f(t) = —6(t) incases when
the left side of (41) becomes less than —6,(t). This will
correspond to the regime of zero thickness of the heat-
assimilation layer, 6(t) =0. Setting 6(t) =0 in Eq. (18}
and taking account of (22), we may then write the for-
mula for £(t) in the following form:

t
q () i i
E(D) (5 Yot dt + WES 8o (43)
where §; is evaluated as before from (21) with g =qq,.
As is seen from (43), calculation of the thickness of
the subliming layer is simplified in this case. The
physical meaning of (43) is that for specific conditicns
a heat transfer regime may be attained such that all
the heat arriving is expended in subliming the material,
This, however, corresponds to a stepwise form of
temperature variation: T(0, t) = Tg and T(Ax, t) = Ty,
where Ax is a positive value which may be as small as
we please. It is understood that this kind of explanation
of the process of sublimation and heating of the bar is
an approximation, The corresponding error may be
evaluated by taking account of the main terms relative
to the quantity f/§ in solving Eq, (39).

It may be seen directly from formula (18) that in
the initial period of sublimation it is possible to make
the approximation that

¢

E() = S 20 g4, (44)
g Viefr

The value of the above initial period is determined
by the intensity of the heat flux at the boundary and by
the thermophysical properties of the material. As
time increases, it is necessary fo use relation (42).
For specific conditions the magnitude of the subliming
layer is determined approximately by (43). The pres-
ence of a second term on the right of (43) is due to the
fact that in the initial period a certain amount of heat
accumulates in the heat-assimilation layer, and then—
for a large enough rate of propagation of the sublima-
tion front—this heat goes over "returns" as it were, to
the subliming layers,

As in the preceding case, we write relations (42)
and (43) in dimensionless form,

H
- B4l (== 1 R
dF— 2 F
JURS: rqut 3k+Jm

l
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><exp((k+l)arjv dt )d?], (45)
B (Uhmyp
i
Skl - o 1]
e =" r§q(t)d+3 o 4o

where g (t) =q (g 9.(2) = g1 ()/go. .

The results of calculations of the quantity £(f) from
formulas (45) and (46) are given in Fig. 3 and compared
with the results of a solution of the original equation by
a numerical method on a computer,

For convenience of examination, the heat fluxes have
been referred to the maximum heat fluxes in each case,
i.e., 6(t) = 0. Here the calculation in case 1 was car-
ried out completely according to formula (45). In case
2 calculation of the quantity §=¢/gmax, in conformity with
the above-mentioned condition &(t) =0, was carried out
according to formula (46), starting from the time f =
= 0,645, when the above equality is satisfied. In addi-
tion, Fig. 3 also gives results of calculation of the
thickness of the subliming layer according to the ap-
proximate relation (44). From the data presented it is
clear that the approximate solutions obtained for the
heat conduction equation describe, with an accuracy
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sufficient for practical applications, the process of
heating and sublimation of a semi-infinite bar or a
half-space, with heat flux at the body boundary given

as an arbitrary function of time. For a course esti-
mate of the thickness of the subliming layer we may
use formula (44), which is in thenature of a first approx-
imation in calculations of sublimation of materials sub-
ject to intensive heating.

NOTATION

%, is the coordinate measured along the length from
the end of the bar; t is the time; T(x;,t) is the current
temperature at section x;; a is the thermal diffusivity
of material; £(t) is the coordinate of sublimation front;
q(t) is the heat flux to external body surface; A is the
thermal conductivity of material. E is the latent heat
of sublimation (vaporization) of material; v is the den-
sity of material; £ = d¢/dt is the rate of propagation
of sublimation front.
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